3. 外周部以外の室内の布基礎には、適切な位置に通気と排水に支障のない寸法の床下換気孔を設ける。

3.4.10 配管スリープ
基礎を貫通して設ける配管スリープは、基礎のひび割れが生じない部分で、雨水が流入しない位置に設ける。

3.4.11 養 生
1. セメント打込み終了後は、直射日光、寒気、風雨などをさけるため、シートなどを用いて養生する。
2. 普通ポルトランドセメントを用いる場合の型枠の存置期間は、気温15℃以上の場合は3日間以上、5℃以上15℃未満の場合は5日間以上とする。なお、やむを得ず寒期間に施工する場合は、気温に応じて適切な養生を行うとともに工事監理者がいる場合は、その指示を受ける。
3. セメント打込み後1日間は、その上を歩行したり、重量物を乗せてはならない。

3.4.12 天端ならし
やりかたを基準にして隙ずみを出し、布基礎の天端をあらかじめ清掃、水洗し、セメント、砂の割合が容積換算して1:3のモルタルなどを水平に塗りつける。ただし、セルフレベリング材を用いて天端ならしを行う場合は特記による。

3.4.13 床下防湿
床下防湿措置は、次の1、2のいずれかによる。ただし、基礎の構造を変える基礎とした場合は、この限りではない。

■1. 防湿用のコンクリートを施工する場合
イ. 床下地面全面に、厚さ60mm以上のコンクリートを打設する。
ロ. コンクリート打設に先立ち、床下地面は整平し、十分洗浄する。

■2. 防湿フィルムを施工する場合
イ. 床下地面全面にJIS A 6930（住宅用プラスチック系防湿フィルム）、JIS Z 1702（仮設用ポリエチレンフィルム）またはJIS K 6781（農業用ポリエチレンフィルム）に適合するもの又はこれらと同等以上の効力を有する防湿フィルムで厚さ0.1mm以上のものを敷きつける。
ロ. 防湿フィルムの重ね幅は150mm以上とし、防湿フィルムの表面を乾燥した砂、砂利又はコンクリート押さえとする。

セルフレベリング材
せっこう系又はセメント系の自然流動材で不膨のあるコンクリート床面や布基礎上端に5〜20mm程度して、平たん、平滑な表面をを作るために仕上げ、24時間以内に硬化し歩行が可能となる材料である。

一体の鉄筋コンクリート造
基礎は一体の鉄筋コンクリート造とすることが構造上必要である。

一体の鉄筋コンクリート造とすると次の、以下の3つの方法がある。
(1) コンクリートを全て一度に打ち込む。
(2) 必要な打ち続き処理を行い、複数回に分けてコンクリートを打ち込む。
(3) ブレキストコンクリートを鉄筋等により相互に緊結する。
コンクリートの打ち続き部は、完全な一体化結合に近いことなく、構造耐力や耐久性の低下をもたらす危険があるので、その処理は慎重に行わなければならない。

打ち続き部の処理に関する具体的な注意事項は以下のとおりである。
(1) 鉛直打ち続き部は欠陥が生じやすいところであるので、できるだけ避けた。
(2) 打ち続き部にレインタンス（コンクリート表面に形成する脆弱な薄膜）が生成された場合は、それを取り除き、健全なコンクリートを露出させる。
(3) 打ち続き部の新旧コンクリートの一体化及び後に打ち続きコンクリートの水和を妨げないため、打ち続き部のコンクリート面を水洗などにより十分に湿潤状態に保つ。ただし、水洗が残っていると打ち続き部の一体化に有効であるため、打ち続き部表面の水は取り除く。

コンクリートの呼び強度
コンクリート強度の呼称であり、生コン工場に発注する際に用いる強度である。通常、鉄筋コンクリート工事におけるレディミキストコンクリートは、品質基準強度を求め、この強度に打込みからコンクリート強度管理の材齢までの補正値を加えた強度を呼び強度として発注する。しかし、本仕様書が対象とする材料は、
造住宅の基礎は、簡易コンクリートに該当し、必要な品質基準強度や強度管理の材種はほぼ定まっているので、コンクリートの打込みから28日後までの期間の予想気温に応じて本項3.4.6の2に示す呼び強度を発注するべきものとしている。なお、簡易コンクリートの「簡易」は、特に高度の技術を必要としないので、ある程度の品質が確保されることを意味しており、コンクリートの品質が低いことを示すものではない。

ねこ土台 吊り下げる基礎の間におけ（土台と基礎の間にあることの総称）を挟んだもの。土台を浮かせて水浸を防ぐとともに、基礎に孔を設けず床下換気が確保できる工法。

関係法令

地下室の設計・施工

地下室の設計、施工にあたっては、平成12年6月1日施行の建築基準法施行令第222条の2及び平成12年5月31日付け建設省告示第1430号「地階における住宅等の居室に設ける開口部及び防水層の設置方法を定める件」において、下記のとおり技術的基準が定められているので、それに従い具体的な仕様を特記する必要がある。

1. 居室が次の(1)から(3)のいずれかに適合しているもの

(1) 地下室の開口部が次の(1)、(2)のいずれかの場所に面しているとともに、換気有効な部分の面積が、当該居室の床面積に対して1/20以上であること。

①イからニの全てに適合するからならば

イ 床面が開口部より低い位置にあり、雨水を排水する設備が設けられているもの

ロ 上部が外気に開放されているもの

ハ 地下室の外壁から、その壁に面するからばしの間隔までの水平距離が1m以上で、開口部の下端からからばしの上端までの垂直距離の4/10以上であること

ニ 地下室の壁に沿った水道方向の長さが2m以上であり、かつ、開口部からの高さ以上であること

②開口部の前面に、当該住宅の設置敷地内で開口部の下端よりも高い位置に RemovingDuplicates

(2) 換気設備（建築基準法施行令第20条の2に規定するもの）を設ける。

(3) 塗装調湿設備を設置する。

2. 直接土に接する外壁、床、屋根には、次の①又は②のいずれか（戸建は①）に適合する防水措置を講じる。（ただし、常水以上に水がある部分においては、耐水材で造り、かつ、材料の接合部及びコンクリートの打診を講ずる部分に防水措置を講ずる場合を除く。）

①泥れしと他工事中の防水層が剥がれ、破断等の損傷をしないよう保護層を設ける。また、下地の種類、土圧、水圧の状況等に応じ、防水層に剥がれ、すき間が生じないように、錆び目等に十分な重ね合わせをする。

②直接土に接する部分を耐水材料で造り、かつ、直接土に接する部分を上面に面する部分の間に居室内への水の浸透を防止するための空げき（当該箇所に浸透した水を排出する設備が設けられているもの）を設ける。

基礎の構造

住宅の基礎については、建築基準法施行令第38条第3項において「建物の構造、形状及び地盤の状況を考慮して建設大臣が定める構造方法を用いるものとしなければならない」と規定されており、平成12年5月23日付け建設省告示第1347号「建築物の基礎の構造方法及び基準計算の基準を定める件」において、基礎の寸法、形状、鉄筋の配置の方法等が定められた。

本告示においては、下表のとおり、地盤に対応した基礎の種類を次のとおり定めているところであり、地震時のみならず非常時の使用時においても基礎の同一性を用い、地盤の許容応力度、土質、建設地の積雪条件等を十分考慮して設計を行い、基礎の種類、鉄筋の配置方法等を決定する必要がある。

<table>
<thead>
<tr>
<th>地盤の長期にわたり生ずる力に対して許容応力度</th>
<th>基礎の種類</th>
</tr>
</thead>
<tbody>
<tr>
<td>20KN/nの未満</td>
<td>基礎くいを用いた構造</td>
</tr>
<tr>
<td>20KN/nの未満以上30KN/nの未満</td>
<td>他他柱又は基礎くいを用いた構造</td>
</tr>
<tr>
<td>30KN/n以上</td>
<td>布基礎、他他柱又は基礎くいを用いた構造</td>
</tr>
</tbody>
</table>

なお、本仕様書では、基礎くいを用いた構造、他他柱を採用する場合にあたっては、建設地の状況や荷重条件を個別に把握し、構造計算等によって基礎の形状、鉄筋の配置方法等を決定し、その仕様を特記することとしている。

凍結深度 地中のある深さで土の温度がほぼ0℃となり、地盤の凍結が停止する位置を凍結線といい、地表から凍結線までの深さを凍結深度という。凍結深度については、建物の安全等を確保するため建築基準法第10条の規定に基づき地方公共団体が条例で定めている場合があるので寒冷地等においては建物の設計前に公共団体に照会する。
床下換気

床下は、地面からの湿気の蒸発等により湿気がたまりやすい場所となり、ナミダクケ（寒冷地）やウタグサレダケ（温暖地）による被害をもたらしている。これらの木材腐朽病は、乾燥に弱いので床下の換気が十分できるように、下記の点に注意して換気孔を設ける必要がある。なお、この主旨は、4 mの等間隔で機械的に換気孔を設けることでなく、馬上受けの位置にも配慮した上で4 m以内の間隔で有効な床下換気が行えるようにバランス良く換気孔を設置することにある。

（1）床下のコーナー部は、換気不足（湿気のこもり）になりがちなのでその箇所に換気孔を設けるのが効果的である。
（2）床下が常に乾燥している状態を保つために換気孔はできるだけ高い位置に設ける。
（3）外側部の基礎の換気孔から雨水が流れないように、換気孔下端は外下がりに勾配をつける。
（4）間仕切壁の下部が基礎の場合は、通風、点検のために換気孔を必ず設ける。
（5）基礎を強固に保つため、換気孔回りは斜め筋等により有効に補強する。

なお、床下換気孔の形状は所要面積が確保されていれば関わらないが、相対湿度によって床下換気孔を確保する場合には、構造上支障が生じないようねこ部分の間隔、アンカーボルトの位置等について十分検討することが必要である。また、ねこ部分の材料については性能及び品質が明らかなものを使うよう注意が必要である。

地盤調査の必要性及び方法

構造耐力上安全な木造住宅を建設する前提条件として、建築予定地の地盤調査を行い、許容地耐力を確認し、建楽を充分に行う構造的に安全な基礎の設計を行う必要がある。

主な調査方法は下表の通りであるが「スウェーデン式サウンディング試験」が最も簡便に許容地耐力を確認できる。

<table>
<thead>
<tr>
<th>調査方法</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハンドオーガーポーリング</td>
<td>専用の機材を人力で回転させながら地中に押しつ込んで土を採取し、地盤の特徴を調査する方法。</td>
</tr>
<tr>
<td>ロータリーポーリング</td>
<td>本格的な地盤調査を行う時に用いられる方法。</td>
</tr>
<tr>
<td>標準貫入試験</td>
<td>ロータリーポーリング用のロッドの先端に標準貫入試験用サインプラを取付け、63.5kgのハンマーを75cmの高さから自由落下させて、30cm貫入させるのに必要な打撃回数により地盤を判定する方法。</td>
</tr>
<tr>
<td>スウェーデン式サウンディング試験</td>
<td>スクリューポイントを取り付けたロッドの頭部に、100kgまでの加重を加えて貫入を測り、貫入が止まったらハンドルに回転を加えて地中にねじ込み、1 mねじ込むのに必要な半回転数を測定する方法。</td>
</tr>
</tbody>
</table>
参考図3.1.1 スウェーデン式サウンディング試験（単位：mm）

割裂地盤 割られた石が相互にかみ合い一つの板のようになって定着地盤の突固めを効果的に行うことを目的とする。割られた石とは、玉石の割られたもの及び冊石で、大きいものを表わしている。ただし、良質地盤においては、この地業を施すことにより地盤を乱し、かえって耐力を減ずることがあるから注意すること。

参考図3.3.3 木造の壁の構造
（A）隅角部及び開口部両端部の補強

（B）釘打ち及び面材のはら方
参考図3.4.2 布基礎詳細（mm）

（A）標準配筋図

（注）1. 布基礎各部の寸法のうち（）内の寸法は一般的な参考例である。底盤の幅の決定にあたって、荷重条件及び地盤の地耐力等を勘案して適切なものとする。
2. 横筋のうち上下主筋はD13その他の横筋及び継筋はD10とし、鉄筋の間隔は300mmとする等を基準とする。
3. 主筋の上端筋の位置が確保出来ない場合には、補助筋の頂部にフックを設けることが好ましい。

（B）換気孔まわりの補強

（注）換気孔まわりはD13の横筋とD10斜め筋により補強する。
D13横筋の長さは、500mm＋換気孔の幅の長さ＋500mmとする。
D10斜め筋の長さは、2×400mm＝800mm以上とする。
（コンクリートの呼び強度 24N/mm²の場合）

（C）コーナー部の配筋おさまり

（注）隅角部では各横筋を折り曲げた上直交する他方向の横筋に300mm以上重ね合せる。
参考図3.4.3 べた基礎詳細（mm）

（注）1. べた基礎の寸法及び配筋については、建設敷地の地盤状況を勘案のうえ、構造計算により、決定すること。
2. 1階の床下地面は、建物周囲の地盤より50mm以上高くする。
3. 根入れ深さは、地面と基礎底盤下端間との距離をいい、12cm以上、かつ、凍結深度以上とする。建物周辺部は、基礎施工後の給排水・ガス工事等による地業・地盤の損傷による建物内部への雨水の浸入を防ぐために、適切な根入れ深さとする。
4. 基礎底盤の雨水を排水するため、適切な位置に水抜き孔を設ける。
参考図3.4.4 腰壁詳細（mm）

参考図3.4.5 土間コンクリート床

(注) 1. 土間コンクリート床とは、盛土の上に、非構造スラブであるワイマッシュ入りコンクリートスラブを設けるものという。
2. 地中に埋めた断熱材は一般にシロアリの被害を受けやすくため、建物周辺におけるシロアリの生息状況や被害状況を十分勘案して詳細仕様を検討するよう注意が必要である。本項3.5（基礎断熱工事）解説（断熱材の施工位置）を参照する。
3.5 基礎断熱工事

3.5.1 一般事項
1. 基礎断熱工事に係る仕様はこの項による。
2. 本項での基礎断熱工法とは、床に断熱材を施工せず、基礎の外側、内側又は両側に地面に垂直に断熱材を施工し、床下換気孔を設けない工法をいう。

3.5.2 基礎における断熱材の施工
1. 断熱材は吸水性を有しない材料を使い、基礎の底盤上端から基礎天端まで打ち込み工法により施工する。
2. 断熱材の綴ぎ目は、隙間がないように施工する。層間は乾燥後、隙間が生じているときは現場発泡断熱材などで補修する。
3. 基礎の屋外側に設ける断熱材が外気に接しないよう、外装仕上げを行う。
4. 基礎天端と土台との間にはすき間が生じないようにする。

3.5.3 断熱材の施工位置
- イ. 基礎の内側
- エ. 基礎の外側
- ハ. 基礎の両側（内側と外側両方）

3.5.4 断熱材の厚さ
1. 基礎に施工する断熱材は、次の表の熱抵抗値を満たすものとし、断熱材の厚さは、地域区分及び断熱材の種類（本章9.（断熱工事）における地域区分及び断熱材の種類）ごとに表中の数値以上とする。

<table>
<thead>
<tr>
<th>地域区分</th>
<th>必要な熱抵抗値</th>
<th>断熱材の種類・厚さ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.2</td>
<td>A-1 65 A-2 60 B 55 C 50 D 45 E 35 F 30</td>
</tr>
<tr>
<td>II〜Ⅴ</td>
<td></td>
<td>A-1 35 A-2 30 B 30 C 25 D 25 E 20 F 15</td>
</tr>
</tbody>
</table>

2. 優良住宅取得支援制度（省エネルギー性）を利用する場合は、1によらず、次の表によるものとする。

<table>
<thead>
<tr>
<th>地域区分</th>
<th>必要な熱抵抗値</th>
<th>断熱材の種類・厚さ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I〜II</td>
<td>3.5</td>
<td>A-1 185 A-2 175 B 160 C 140 D 120 E 100 F 80</td>
</tr>
<tr>
<td>III〜Ⅴ</td>
<td>1.7</td>
<td>A-1 90 A-2 85 B 80 C 70 D 60 E 50 F 40</td>
</tr>
</tbody>
</table>
3. 1～3地域において基礎を鉄筋コンクリート造の両側基礎に、断熱材を基礎の内側に施工する場合には、次の部分について吸水性を有しない断熱材により断熱補強の施工（長さ450mm程度以上、厚さ20mm程度以上）を行う。

イ. 基礎基礎の上上がり部分とベート部分の取合い部分において住宅内部に向かう部分（水平に施工）
ロ. 間仕切壁下部の断熱基礎において、外壁部から住宅内部に向かう部分の両側（垂直に施工）

3.5.5 床下防潮・防繭

床下地面には次のいずれかの措置を講ずる。ただし、床下地面の断熱措置が必要な地域（北海道、青森県、岩手県、秋田県、宮城県、山形県、福島県、新潟県、山梨県、石川県および福井県以外の地域）に建設する場合は3又は4に限る。

1. 床下全面にJIS A 6930（住宅用プラスチック系防潮フィルム）、JIS Z 1702（包装用ポリエチレンフィルム）若しくはJIS X 6781（農業用ポリエチレンフィルム）に適合するもの又はこれらと同等以上の効力を有する防潮フィルムで厚さ0.1mm以上のものを敷きつめる。なお、防潮フィルムの重ね幅は300mm以上とし、防潮フィルムの全面をコンクリート又は乾燥した砂で押さえ、押さえの厚さは50mm以上とする。

2. 床下全面に厚さ100mm以上のコンクリートを打設する。

3. 鉄筋コンクリート造のベート基礎（厚さ100mm以上で防潮コンクリートを兼ねる。）とする。

4. 断熱基礎と鉄筋により一体となって基礎の内側部の地盤上と一体に打設されたコンクリート（厚さ100mm以上で防潮コンクリートを兼ねる。）で蔽う。

施工方法

基礎断熱工法における注意点

床断熱工法に替えて基礎断熱工法（屋に断熱材を施工せず、基礎の内側、内側又は両側に地面に垂直に断熱材を施工し、床下換気孔を設けない工法）を採用する場合、次の点に注意する必要がある。

1. 床下換気孔が設置されなくなることから、床下空洞内耐久性上支障が生ずるような水蒸気の滞留、結露の発生が起きないように、床下地面からの防潮を念入に行う。また、床下空洞の空気質を室内と同質にし、床下における水蒸気の滞留を防止することも重要であり、例えば、床下に機械式強制換気設備を設置し、居室の空気を、床下経由で屋外に排出することなどは有効な手段のひとつである。

2. 地中に埋めた断熱材は一概にシロアリの被害を受けやすいため、本工法の採用に当たっては、建設地周辺におけるシロアリの発生状況や被害状況等の実状を十分勘案の上決定する。

3. 床下空洞の空気は外気ではなく、上部の居住空間の空気との交流が主となるため、床下空気中に防腐・防蠅薬剤を散布しないような工法、材料の選択をすることが望ましい。また、居住空間が高湿度となっている場合には、床下空洞も高湿度となり、耐久性上支障となる結露やカビの発生が考えられるため、居住空間の湿度の管理を適切に行う。

4. 排水管からの漏水や雨浸りによる雨水が床下空洞に侵入した場合の異常を認めた際には、速やかに対策を講ずる。

5. 床下の換気孔等を用意して定期的に床下空洞の点検を行う。

基礎における断熱材の施工

基礎の断熱材施工後、断熱材同士の間にすき間が生じていると熱的な弱点が生じ、耐久性上支障となる恐れのある結露が生ずる要因となる。したがって、耐熱脱型後に、断熱材同士の間に隙間が生じている場合は、現場発泡ウレタン材などで補修することが必要である。

断熱材の施工位置

地中に埋められた断熱材は一般的にシロアリの被害を受けやすく、断熱材を地中に埋め込む本工法の採用にあつては、建設地周辺におけるシロアリの発生状況や被害状況等の実状を十分勘案して、採用・不採用や詳細仕様を決定するように十分な注意が必要である。仕様書本文では規定していないが、特に、イニコロリの被害が想定される地域（北海道、青森県、岩手県、秋田県、宮城県、山形県、福島県、茨城県、栃木県、群馬県、新潟県、長野県、岐阜県、滋賀県以外）では、地中に埋め込んだ基礎の外側の断熱材が適宜となる恐れが高いため、断熱材の施工位置を内側とする、あるいは何らかの工夫をした上で、基礎の外側に施工することが必要である（参考図3.5-1参照）。

- 35 -
一方、寒冷地でシオニア被害が想定されない地域においては、基礎の耐久性と熱橋防止、また基礎の熱容量を活用するうえで、断熱材の施工位置を外側又は両側とすることが望ましい。

参考図3.5-1 床下地面の防潮措置が必要な地域における基礎断熱工法（内側施エペた基礎仕様）

参考図3.5-2 床下地面の防潮措置が不要な地域における基礎断熱工法
（床下防湿フィルムによる防潮仕様）

（コンクリート打設による防潮仕様）
防湿フィルムの押え

床下防湿措置において、防湿フィルムを乾燥した砂で押さえられる場合は、次の点に留意する。

(1) 設計・施工上の留意点

① 防湿フィルムの施工にあたっては、あらかじめ地面に飛散する木片等を除去した上、地面を十分締め固め、平滑にし、フィルムの上に乾燥した砂を全面かつ均一に敷きつめる。
② 配管工事、木工事など、床下空間で作業を行う場合は、敷きつめた砂を乱さないように、また防湿フィルムが破損しないように十分注意する。
③ 地面やフィルム面、押さえ砂に木くす等が混入しないように清掃を行う。
④ 施工時の天候に留意し、万一雨などがによる地面や押さえ砂が濡れた場合は、十分乾燥させる。
⑤ 組み立て面と押さえ砂上面とは、300mm程度以上の床下空間を確保することが望ましい。

(2) 維持管理上の留意点

① 配管や床の修繕など、床下にて作業を行う際には、地盤防湿性能が低下しないよう、十分留意して行う。
② 修繕等の工事で押さえ砂や防湿フィルムを取り除く場合は、工事施行後元通りに戻しておく。

コンクリートの乾燥

コンクリートを使用して床下防湿措置を講ずる場合、施工直後はコンクリート中に含まれた水分が蒸発することにより床下空間の湿度が高くなり、結露やかび等が発生する危険性が高くなる。したがって、床下のコンクリートが十分乾燥してから床仕上げを行う等十分注意することが必要である。

留意事項

断熱材の厚さ

床下空間で耐久性上支障となる恐れのある結露が生ずる可能性を低くするため、基礎に施工する断熱材の熱抵抗値を設定している。なお、優良住宅取得支援制度（省エネルギー性）を利用する場合には、断熱材の厚さをより厚くすることが必要となる場合があるので、該当する仕様項目を参照して厚さを決定するよう注意が必要である。

べた基礎等による防蟻措置について

基礎断熱工法では、床下空間の空気は外気ではなく、上部の居住空間との交換が主となるため、シロアリの被害が想定される地域では薬剤による土壌処理と同等以上の効力を有する工法として、本項2.5.5（床下防湿措置）の③又は④とする。

3.6 埋戻し及び地ならし

3.6.1 埋戻し

埋戻しは、根切り土のうち良質な土を利用し、厚さ300mm以内ごとにランマーなどで突き固める。

3.6.2 地ならし

建物の周囲1mまでの部分は、水はけをよくするように地ならしをする。
4. 転体工事

4.1 一般事項

転体工事に伴う仕様は本項による。ただし、告示1540号の第9の規定及び告示1541号の第3の規定により行う構造計算によって構造耐力が安全であることが確かめられた場合は、本項によらず特記による。

4.2 材料

4.2.1 構造材及び筋かい等

1. 構造耐力上重要な部分に用いる構造材は、下表に掲げる規格に適合するものとする。なお、国土交通大臣がその樹種、区分及び等級等に応じてそれぞれ許容応力度及び材料強度の数値を指定したものについては、当該材料を使用することができ、特記による。

<table>
<thead>
<tr>
<th>構造部材の種類</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>土台、端根太、</td>
<td>甲種枠組材の2級、1級、2級</td>
</tr>
<tr>
<td>側根太、まくぎ、</td>
<td>化粧板工法構造用集成材</td>
</tr>
<tr>
<td>木造柱及び屋根柱</td>
<td>甲種枠組材の2級、1級、2級</td>
</tr>
<tr>
<td>10cm以上の大木及び</td>
<td>機械による曲げ応力等級区分を行う枠組工法構造用集成材</td>
</tr>
<tr>
<td>わなぎ</td>
<td>構造用集成材</td>
</tr>
</tbody>
</table>

2. 末梢太及び天井根太

<table>
<thead>
<tr>
<th>(1) 末梢太及び天井根太</th>
<th>(1)に掲げる規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIS G 3302（樹種別めっき鋼板及び鋼帯）の鋼板及び鋼帯</td>
<td></td>
</tr>
<tr>
<td>JIS G 3312（樹種別めっき鋼板及び鋼帯）の鋼板及び鋼帯</td>
<td></td>
</tr>
<tr>
<td>JIS G 3331（樹種別55%アルミ＝ウム＝亜鉛合金めっき鋼板及び鋼帯）の鋼板及び鋼帯</td>
<td></td>
</tr>
</tbody>
</table>

3. 横の上枠及び頭つなぎ

<table>
<thead>
<tr>
<th>横の上枠及び頭つなぎ</th>
<th>(1)に掲げる規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲種枠組材の3級</td>
<td></td>
</tr>
<tr>
<td>乙種枠組材のコンストラクション、スタンダード</td>
<td></td>
</tr>
<tr>
<td>甲種枠組材の3級</td>
<td></td>
</tr>
<tr>
<td>乙種枠組材のコンストラクション、スタンダード</td>
<td></td>
</tr>
</tbody>
</table>

4. 壁のたて枠

<table>
<thead>
<tr>
<th>壁のたて枠</th>
<th>(3)の耐力に掲げる規格（構造用集成材規格の非対称等級構成集成材を除く）</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲種枠組材の3級</td>
<td></td>
</tr>
<tr>
<td>乙種枠組材のコンストラクション、スタンダード</td>
<td></td>
</tr>
</tbody>
</table>

5. 壁の下枠

<table>
<thead>
<tr>
<th>壁の下枠</th>
<th>(3)の耐力に掲げる規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲種枠組材のコティリティ</td>
<td></td>
</tr>
<tr>
<td>乙種枠組材のコティリティ</td>
<td></td>
</tr>
</tbody>
</table>

6. 筋かい

<table>
<thead>
<tr>
<th>筋かい</th>
<th>(3)の耐力に掲げる規格（構造用集成材規格の非対称等級構成集成材を除く）</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲種枠組材の3級</td>
<td></td>
</tr>
</tbody>
</table>

（注）1. 上記の材料の規格に係る表記は、国土交通省告示第1540号（平成13年10月15日制定）に基づくものである。

2. 厚さ2.0×4.0mm未満の鋼板又は鋼帯を床根太、天井根太、耐力壁以外の壁の上枠、頭つなぎ及び耐力壁以外の壁の下枠に用いる場合は、当該鋼板又は鋼帯の厚さを0.4mm以上のものとし、かつ、冷間成形による曲げ部分（当該曲げ部分の内径の寸法を当該鋼板又は鋼帯の厚さの数値以上とする。）又はかしめ部分を有するものとする。

4.2.2 各種ボード類

1. 構造用合成板及び構造用パネルの品質は、それぞれ合板のIASに適合する構造用合成板、構造用パネルのIASに適合するものとする。

2. ハードボード、硬質木片セメント板、シージングボード、せっこうボード、ラスシート
4.2.3 釘とねじ

1. 建造物用材を取付ける釘は、品質及び性能が明示された良質なものとする。JISで規定する釘の種類は以下のものがある。

<table>
<thead>
<tr>
<th>釘の種類</th>
<th>長さ</th>
<th>腹部径</th>
<th>頭部径</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>C N 50</td>
<td>50.8</td>
<td>2.87</td>
<td>6.76</td>
<td></td>
</tr>
<tr>
<td>C N 65</td>
<td>63.5</td>
<td>3.33</td>
<td>7.14</td>
<td></td>
</tr>
<tr>
<td>C N 75</td>
<td>76.2</td>
<td>3.76</td>
<td>7.92</td>
<td></td>
</tr>
<tr>
<td>C N 90</td>
<td>88.9</td>
<td>4.11</td>
<td>8.74</td>
<td></td>
</tr>
<tr>
<td>B N 50</td>
<td>50.8</td>
<td>2.51</td>
<td>6.76</td>
<td></td>
</tr>
<tr>
<td>B N 65</td>
<td>63.5</td>
<td>2.87</td>
<td>7.54</td>
<td>JIS A 5508</td>
</tr>
<tr>
<td>B N 75</td>
<td>76.2</td>
<td>3.25</td>
<td>7.92</td>
<td></td>
</tr>
<tr>
<td>B N 90</td>
<td>88.9</td>
<td>3.43</td>
<td>8.74</td>
<td></td>
</tr>
<tr>
<td>GNF 40</td>
<td>38.1</td>
<td>2.34</td>
<td>7.54</td>
<td></td>
</tr>
<tr>
<td>S F 45</td>
<td>45.0</td>
<td>2.45</td>
<td>5.60</td>
<td></td>
</tr>
<tr>
<td>S N 40</td>
<td>38.1</td>
<td>3.05</td>
<td>11.13</td>
<td></td>
</tr>
</tbody>
</table>

2. 釘打ちは、木口打ち（E）、斜め打ち（T）、平打ち（F）とし、木口打ちにはCN90（又はBN90）を、斜め打ちにはCN75（又はBN75）を、平打ちには材料が厚さ38mmの場合にCN90（又はBN90）、筋かいの場合にCN65（又はBN65）を用いることを原則とする。なお、BN釘を使用する場合の釘の種類、本数、間隔は付録3による。

3. GNF40又はSF45は耐力壁となるセッコウボード張り等に、SN40は耐力壁となるシーニングボード張りに、CN50は耐力壁となる構造用合板張り等に用いる。

4. 耐力壁となるセッコウボードを取りつけるねじの品質は、JISB1112（十字穴付き木ねじ）又はJISB1125（ドリリングタップねじ）に適合するものとし、その種類は下表による。

<table>
<thead>
<tr>
<th>ねじの種類</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WSN</td>
<td>JISB1112（十字穴付き木ねじ）に定める呼び径3.8mmで長さ32mm以上のもの</td>
</tr>
<tr>
<td>DTSN</td>
<td>JISB1125（ドリリングタップねじ）に定める呼び径4.2mmで長さ30mm以上のもの</td>
</tr>
</tbody>
</table>

5. 釘又はねじについて特記がない場合は、釘又はねじの長さに打ち付ける板厚の2.5倍以上とする。

6. 釘打ち等には、打ちつける板等に割れが生じないよう適当な端あき及び縁あきを設ける。

4.2.4 諸金物

4.2.5 その他

国土交通大臣が認定した材料である、木質接着材材料、木質接着材及び木質断熱複合パネルについては、本工事各項にかかわらず当該認定の範囲で使用するものとし、特記による。
参考図4.2.3 針の打ち方と表示

参考図4.2.4 Cマークの例

関係法令
構造耐力土要な部分に使用することができる海外規格木材
構造耐力上重要な部分に使用する材料は、告示1540号において日本農林規格（JAS）に規定する製材等を用いることとされているが、JAS規格以外でも国土交通大臣がその種類、区分及び等級等に応じてそれぞれ許容応力度及び材料強度を指定した材料については、構造耐力上必要な部分への使用も認められている。海外の規格品のうち、材料強度等の指定を受けた材料についての詳細は、付録7を参照すること。

ホルムアルデヒドを発散する建材の使用規制
建築基準法の改正（平成15年7月1日施行）により、内装仕上げ材及び天井材等について、ホルムアルデヒドを発散する建材材料の使用が制限されることとなったので注意が必要である。詳しくは本章1.（一般事項）の項の解説を参照。

ホルムアルデヒドの発散等級について
建材の選定においては、JIS又はJASに定めるF☆☆☆☆レベルの材料又はこれと同等以上の性能を有するものを使用することが望ましい。

留意事項
諸金物（接合金物）
枠組壁工法において、接合金属や接合具で構造部材を接続することは重要であり、告示1540号においても、軸力計等の金物等による締結や構造計算時における接合の粘りの確認が規定されている。
接合部に発生する荷重を有効に伝達するためには、品質及び性能が明らかで良質な接合金物等を選択することが重要である。このような接合金物の一例として（財）日本住宅・木材技術センターが定める枠組壁工法用接合金物規格に適合するもの（Cマーク表示金物）及びその同等品があるが、これら以外にも昨今の技術開発により様々な金物が開発されているので、施工及び設計・施工者に打合せの上、良質な金物を選択することが重要である。また、防腐・防錆処理の施された材又は含水率の高い材に用いる接合金属（くぎを含む）はめっき処理されたものを使用することが望ましい。以下、Cマーク表示金物の一覧表を掲載するので参考にされたい。
<table>
<thead>
<tr>
<th>種類</th>
<th>記号</th>
<th>形状・寸法（単位: mm）</th>
<th>使用くぎの種類と本数</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>柱</td>
<td>PB-33</td>
<td></td>
<td>六角ボルトM12 六角ナットM12</td>
<td>独立柱の支持</td>
</tr>
<tr>
<td>柱脚</td>
<td>PB-42</td>
<td></td>
<td>全ねじボルト M12 六角形ナット M12</td>
<td></td>
</tr>
<tr>
<td>金物</td>
<td>GL-PB</td>
<td></td>
<td>床枠組に 6-Z N65 打込みピン φ14X100</td>
<td>支持柱脚部と床枠組の緊結</td>
</tr>
<tr>
<td>柱頭</td>
<td>PC</td>
<td></td>
<td>はりに 6-Z N65 柱に 6-Z N65</td>
<td>柱とはりの緊結</td>
</tr>
<tr>
<td>金物</td>
<td>GL-PC</td>
<td></td>
<td>はりに 8-Z N65 柱に 8-Z N65</td>
<td>支持柱頭部とはりの緊結</td>
</tr>
<tr>
<td>種類</td>
<td>記号</td>
<td>形状・寸法（単位：mm）</td>
<td>使用くぎの種類と本数</td>
<td>用途</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>帯金物</td>
<td>S-45</td>
<td>太めくぎ 6-Z N40</td>
<td>棟太、上枠又は頭つなぎの緊結</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-50</td>
<td>太めくぎ 12-Z N65</td>
<td>壁と床柱組の緊結 2階に両面開口を設けたときの隅柱、側壁のまくぎ受け及びたて枠と1階戸との緊結等</td>
<td></td>
</tr>
<tr>
<td>帯金物</td>
<td>S-65</td>
<td>太めくぎ 15-Z N65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>物</td>
<td>S-90</td>
<td>太めくぎ 12-Z N40</td>
<td>棟部たる木の相互の緊結 オーバーハング等の隅角部の緊結</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SW-67</td>
<td>太めくぎ 26-Z N65</td>
<td>両面開口を設けたとき側の壁のまくぎ受け及びたて枠と土台の緊結</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>土間コンクリート床スラブで構成し両面開口を設けた場合の隅柱及びたて枠並びにまくぎ受けと土台の緊結</td>
<td></td>
</tr>
<tr>
<td>ストラップアンカー</td>
<td>SA-65</td>
<td>太めくぎ 12-Z N65 六角ボルト M8×150 小型角座金 W1.6×23 螺ナット M8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>種類</td>
<td>記号</td>
<td>形状・寸法（単位：mm）</td>
<td>使用ぐきの種類と本数</td>
<td>用途</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----</td>
</tr>
<tr>
<td>あおり止め金物</td>
<td>TS</td>
<td>4-2 Z N40 4-2 Z N40 2-2 Z N40</td>
<td>4-2 Z N40 1-2 Z N40 1-2 Z N40 1-2 Z N40</td>
<td>たる木またはトラスと頭つなぎ, 上枠の緊結</td>
</tr>
<tr>
<td>あおり止め金物</td>
<td>TW-23</td>
<td>4-2 Z N40 4-2 Z N40 2-2 Z N40</td>
<td>4-2 Z N40 1-2 Z N40 1-2 Z N40 1-2 Z N40</td>
<td>たる木またはトラスと頭つなぎ, 上枠, たて枠の緊結</td>
</tr>
<tr>
<td>あおり止め金物</td>
<td>TW-30</td>
<td>4-2 Z N40 4-2 Z N40 2-2 Z N40</td>
<td>4-2 Z N40 1-2 Z N40 1-2 Z N40 1-2 Z N40</td>
<td>たる木またはトラスと頭つなぎ, 上枠, たて枠の緊結</td>
</tr>
<tr>
<td>根太</td>
<td>JH-S 204.206</td>
<td>4-2 Z N40 4-2 Z N40</td>
<td>4-2 Z N40 1-2 Z N40 1-2 Z N40 1-2 Z N40</td>
<td>たる木、屋根根太又は天井の接合部に支持点がない場合の緊結</td>
</tr>
<tr>
<td>受け金物</td>
<td>JH 204.206</td>
<td>6-2 Z N40 4-2 Z N40</td>
<td>6-2 Z N40 4-2 Z N40</td>
<td>たる木またはトラスと頭つなぎ, 上枠, たて枠の緊結</td>
</tr>
<tr>
<td>受け金物</td>
<td>JH 2-204 2-206</td>
<td>6-2 Z N65 4-2 Z N65</td>
<td>6-2 Z N65 4-2 Z N65</td>
<td>たる木またはトラスと頭つなぎ, 上枠, たて枠の緊結</td>
</tr>
<tr>
<td>種類</td>
<td>記号</td>
<td>形状・寸法（単位：mm）</td>
<td>使用くぎの種類と本数</td>
<td>用途</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>枠受け金物</td>
<td>JH 208・210</td>
<td>(212) 岡根太に10-Z N65 岡根太に6-Z N40</td>
<td>(208及び210用) 岡根太に8-Z N65 岡根太に6-Z N40</td>
<td>45°に根太を接合する場合の接合部に支持点がない場合の Packing</td>
</tr>
<tr>
<td>枠受け金物</td>
<td>JHS 208・210R</td>
<td>(208及び210用右勝手) 岡根太に10-Z N65 岡根太に6-Z N40</td>
<td>(208及び210用) 岡根太に8-Z N65 岡根太に6-Z N40</td>
<td>はりの接合部に支持点がない場合のはりの接合</td>
</tr>
<tr>
<td>枠受け金物</td>
<td>JHS 208・210L</td>
<td>(208及び210用左勝手) 岡根太に10-Z N65 岡根太に6-Z N40</td>
<td>(2-208用) 受け材に10-Z N65 はりに6-Z N65</td>
<td>はりの接合部に支持点がない場合のはりの接合</td>
</tr>
<tr>
<td>枠受け金物</td>
<td>BH 2-208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>種類</td>
<td>記号</td>
<td>形状・寸法（単位：mm）</td>
<td>使用くぎの種類と本数</td>
<td>用途</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>BH</td>
<td>(2-210用)
受け材に 10-Z N65
はりに 6-Z N65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH</td>
<td>(2-212)
受け材に 12-Z N90
はりに 6-Z N65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>棧</td>
<td>BH</td>
<td>(3-208用)
受け材に 14-Z N90
はりに 6-Z N90</td>
<td>はりの接合部に支点がない場合のはりの緊結</td>
<td></td>
</tr>
<tr>
<td>3-208</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>掛</td>
<td>BH</td>
<td>(3-210用)
受け材に 14-Z N90
はりに 6-Z N90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>金</td>
<td>BH</td>
<td>(3-212用)
受け材に 16-Z N90
はりに 6-Z N90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-212</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 45 -
<table>
<thead>
<tr>
<th>種類</th>
<th>記号</th>
<th>形状・寸法（単位：mm）</th>
<th>使用くぎの種類と本数</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>B H</td>
<td>4-208</td>
<td></td>
<td>(4-208用) 受け材に 14-Z N90 はりに 6-Z N90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B H</td>
<td>4-210</td>
<td></td>
<td>(4-210用) 受け材に 14-Z N90 はりに 6-Z N90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>架</td>
<td>4-212</td>
<td></td>
<td>(4-212用) 受け材に 16-Z N90 はりに 6-Z N90</td>
<td>はりの接合部に支持点がない場合のはりの緊結</td>
</tr>
<tr>
<td>受</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>け</td>
<td>B HH</td>
<td></td>
<td>(2-210用) 受け材に 10-Z N80 はりに 6-Z N85</td>
<td></td>
</tr>
<tr>
<td>金</td>
<td>2-210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>物</td>
<td>B HH</td>
<td></td>
<td>(3-210用) 受け材に 14-Z N80 はりに 6-Z N90</td>
<td></td>
</tr>
<tr>
<td>種類</td>
<td>記号</td>
<td>形状・寸法（単位：mm）</td>
<td>使用くぎの種類と本数</td>
<td>用途</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>BHS 2-210R</td>
<td>(2-210用) 受け材に12-Z N65 はりに4-Z N65</td>
<td>(2-210用) 受け材に12-Z N65 はりに4-Z N65</td>
<td>45°にはりを接合する場合の接合部に支持点がない場合ははりの緊結</td>
</tr>
<tr>
<td></td>
<td>BHS 2-210L</td>
<td>太めくぎ10-Z N65</td>
<td>(2-210L用) 受け材に12-Z N65 はりに4-Z N65</td>
<td>土間コンクリート床スラブの隅角部及び開口部両端の補強 半地下室のたて枠の隅角部及び開口部両端の補強</td>
</tr>
<tr>
<td></td>
<td>C.P.L</td>
<td>太めくぎ10-Z N65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.P.T</td>
<td>太めくぎ10-Z N65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L.H204</td>
<td>たて枠に6-Z N65 まくさに2-Z N65</td>
<td></td>
<td>開口部の幅が1m以下の場合のまくさたて枠の緊結</td>
</tr>
<tr>
<td>種類</td>
<td>記号</td>
<td>形状・寸法（単位：mm）</td>
<td>使用ぐきの種類と本数</td>
<td>用途</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>LH206</td>
<td></td>
<td>たて枠に 10-Z N65 まぐさに 2-Z N65</td>
<td></td>
</tr>
<tr>
<td>PG</td>
<td></td>
<td></td>
<td>太めぐき 4-Z N65</td>
<td>たて枠、床根等の配線、配管の保護</td>
</tr>
<tr>
<td>種類</td>
<td>記号</td>
<td>形状・寸法（単位：mm）</td>
<td>使用接合具</td>
<td>用途</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------------------</td>
<td>----------</td>
<td>------</td>
</tr>
</tbody>
</table>
| HD-B10 | HD-B10 HD-B15 | 六角ボルト 2-M12
又は
ラスクリュー 2-L S12 |
| | | L=110, 125mm | たて枠と基礎（上台）又はたて枠相互の緊結 |
| HD-B15 | HD-B15 HD-B15 | 六角ボルト 3-M12
又は
ラスクリュー 3-L S12 |
| HD-B20 | HD-B20 HD-B25 | 六角ボルト 4-M12
又は
ラスクリュー 4-L S12 |
又は
ラスクリュー 5-L S12 |
<p>| HD-N5 | HD-N5 HD-N10 | 太めぐき 6-Z N90 |
| HD-N10 | HD-N5 HD-N10 | 太めぐき 10-Z N90 |
| HD-N15 | HD-N15 HD-N20 | 太めぐき 16-Z N90 |
| HD-N20 | HD-N15 HD-N20 | 太めぐき 20-Z N90 |</p>
<table>
<thead>
<tr>
<th>種類</th>
<th>記号</th>
<th>形状・寸法（単位：mm）</th>
<th>使用接合具</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>.getContentPane() (引</td>
<td>HD-N25</td>
<td>太めくぎ 26-Z N90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| け金物 | S-HD10 | 六角ボルト 2-M12
| つ | 且は
| 金物 | S-HD15 | ラグスクリュー 2-L S12 |
| へ引き | S-HD10 | 六角ボルト 3-M12
| け寄 | 且は
| せ金物 | S-HD15 | ラグスクリュー 3-L S12 |
| へ | S-HD20 | 六角ボルト 4-M12
| け | 且は
| せ金物 | S-HD20 | ラグスクリュー 4-L S12 |
| へ | S-HD25 | 六角ボルト 5-M12
| け | 且は
<p>| せ金物 | S-HD25 | ラグスクリュー 5-L S12 |</p>
<table>
<thead>
<tr>
<th>種類</th>
<th>記号</th>
<th>形状・寸法（単位：mm）</th>
<th>使用くぎの種類と本数</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>アンカーボルト</td>
<td>M12</td>
<td>角座金 W4.5×40</td>
<td>六角ナット M12</td>
<td>基礎と土台の緊結</td>
</tr>
<tr>
<td></td>
<td>M16</td>
<td>角座金 W9.0×80</td>
<td>六角ナット M16</td>
<td>ホールダウン金物と基礎又は基礎と土台の緊結</td>
</tr>
<tr>
<td></td>
<td>M16W</td>
<td>六角ナット M16</td>
<td></td>
<td>ホールダウン金物と土台の緊結</td>
</tr>
<tr>
<td>太めくぎ</td>
<td>Z N40</td>
<td></td>
<td></td>
<td>金物接合用の釘</td>
</tr>
<tr>
<td></td>
<td>Z N65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z N80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z N90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>種類</td>
<td>記号</td>
<td>形状・寸法（単位：mm）</td>
<td>使用くぎの種類と本数</td>
<td>用途</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>両ねじボルト</td>
<td>M16</td>
<td></td>
<td></td>
<td>引き寄せ金物接合用</td>
</tr>
</tbody>
</table>

（注）かず金物（C P・L及びC P・T）、アンカーボルト（M12、M16）、座金付きボルト（M16W）、角座金（W4.5×40、W9.0×80）、丸座金（RW9.0×90）及びZN釘は、住・木容器の規格によるZマーク表示金物とすることもできる。
また、図中に表示した金物の他にもCマーク表示金物及びその同等認定金物がある。
4.3 鉄筋寸法

4.3.1 製材及び集成材の表面寸法

製材及び集成材は、表面調整をほどこしたものとし、その寸法型式と寸法は下表のとおりとする。

<table>
<thead>
<tr>
<th>区分</th>
<th>寸法型式</th>
<th>未乾燥材（含水率35%以下）</th>
<th>乾燥材（含水率19%以下）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>製材</td>
<td>104</td>
<td>20×90</td>
<td>19×89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>20×143</td>
<td>19×140</td>
<td></td>
</tr>
<tr>
<td></td>
<td>203</td>
<td>40×65</td>
<td>38×64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>204</td>
<td>40×90</td>
<td>38×99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>206</td>
<td>40×143</td>
<td>38×140</td>
<td></td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>40×190</td>
<td>38×184</td>
<td>仕上差はプラス、マイナス1.5mm</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>40×241</td>
<td>38×235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>212</td>
<td>40×292</td>
<td>38×286</td>
<td></td>
</tr>
<tr>
<td></td>
<td>404</td>
<td>90×90</td>
<td>89×89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>406</td>
<td>ー</td>
<td>89×140</td>
<td></td>
</tr>
<tr>
<td></td>
<td>408</td>
<td>ー</td>
<td>89×184</td>
<td></td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>ー</td>
<td>89×235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>412</td>
<td>ー</td>
<td>89×286</td>
<td></td>
</tr>
<tr>
<td>集成材</td>
<td>414</td>
<td>ー</td>
<td>89×336</td>
<td></td>
</tr>
<tr>
<td></td>
<td>416</td>
<td>ー</td>
<td>89×387</td>
<td></td>
</tr>
<tr>
<td></td>
<td>606</td>
<td>ー</td>
<td>140×140</td>
<td></td>
</tr>
<tr>
<td></td>
<td>610</td>
<td>ー</td>
<td>140×235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>612</td>
<td>ー</td>
<td>140×286</td>
<td></td>
</tr>
</tbody>
</table>

注
1. 上記寸法はJASの格付け時の寸法を表しており、現場実入時での実寸法は乾燥の度合等で若干の振れがある。
2. 集成材の含水率は15%以下とする。

4.3.2 締手及び仕口

締手及び仕口は、突付け又は釘付けとし、防に配慮する。

4.4 木部の防腐・防蟻措置

4.4.1 土台の防腐・防蟻措置

1. 土台の防腐・防蟻措置（北海道及び青森県にあっては防腐措置のみ。以下同じ。）は次のいずれかによる。
 - 木材の表面処理（エチレンガスなどの腐食防止剤を用いた）
 - 土台本体の表面処理（セメント系の塗料を使用した）
 - 土台本体の内部処理（炭酸ガスなどの防腐剤を用いた）

2. 土台に接する外壁の下端には水切りを設ける。

4.4.2 土台以外の木部の防腐・防蟻措置

1. 地面からの高さが1m以内の外壁の枠組（土台を除く。）の防腐・防蟻措置は次のいずれかによる。
 - 木材の表面処理（エチレンガスなどの腐食防止剤を用いた）
 - 土台本体の表面処理（セメント系の塗料を使用した）
 - 土台本体の内部処理（炭酸ガスなどの防腐剤を用いた）

- 53 -
造用集成材、構造用集成材、構造用単板積層材又は枠組製工法構造用たて繊ぎ材を用いる。

ロ．外壁内に通気層を設け、壁体内通気を可能とする構造と、その仕様は、特記による。特記のない場合は、本項4.10.10（外壁内通気構築）による。

ハ．次の（イ）又は（ロ）の薬剤処理を施した枠組製工法構造用材、枠組製工法構造用たて繊ぎ材を用いる。

（イ）本項4.4.3（薬剤の品質等）の1に掲げる防腐・防蟻処理材として工場で処理したもの

（ロ）本項4.4.3（薬剤の品質等）の2に掲げる防腐・防蟻処理を、現場で塗布、吹付け又は浸漬したもの

2. 地面からの高さが1m以下の外壁下地材の品質は次のいずれかにより、本項4.4.3（薬剤の品質等）の1に掲げる防腐・防蟻処理材として工場で処理したもの、若しくは、本項4.4.3（薬剤の品質等）の2に掲げる防腐・防蟻処理を、現場で塗布、吹付け又は浸漬したものを利用する。ただし、外壁内に通気層を設け、壁体内通気を可能とする構造とした場合は、この限りでない。
4.5 薄板軽量鋼の
防潮措置
構造耐力上主要な部分に薄板軽量鋼を用いる場合の表面仕上げは、JIS G 3302（溶融
亜鉛めっき鋼板及び鋼帯）に規定するめっきの付着量表示記号Zを相当以上の有効なさ
び止め及び摩耗防止のための措置を講じたものとしなければならない。ただし、次に掲
げる場合にあっては、この限りでない。
イ．薄板軽量鋼を屋外面に部分（防水紙等で有効に防水されている部分を除く。）
及び摩耗状態となる恐れのある部分以外に使用する場合
ロ．薄板軽量鋼に木材、壁材又は屋根下地材等による被覆その他これに類する有効な
摩耗防止のための措置を講じた場合

4.6 床下地面の防潮措置
4.6.1 適用
1. 地面に講じる防潮措置は、次のいずれかによる。ただし、北海道、青森県、岩手県、秋
田県、宮城県、山形県、福島県、新潟県、長野県、石川県及び福井県においては、地面に
講じる防潮措置を省略することができる。
イ．鋼筋コンクリート造の新築基礎
ロ．地面を一様に打設したコンクリート（市基礎と鉄筋により一体となったものに限る。）
で覆う。
ハ．本項4.6.2（薬剤による土壌処理）の1に掲げる薬剤を用い、市基礎内局部及びつか
石の周囲の土壌処理を行う。

4.6.2 薬剤による土壌処理
1. 薬剤による土壌処理を行う場合は、次のいずれかによる。
イ．土壌の防潮措置に使用する薬剤の品質等は、特記による。特記がない場合は、しろあ
り協会又は木材保存協会認定の土壌処理剤については、これと同等以上の効力を有するもの
とする。
ロ．土壌処理と同等以上の効力があるものとして、防潮効果を有するシートを床下の土
壌表面に敷設する工法、樹脂皮膜を形成する方法等を採用する場合は、特記による。
2. 薬剤を使用する場合の処理方法は、しろあり協会制定の標準仕様書に準ずる。
3. 給排水用の塩化ビニール管の接合部分には防潮・防潮措置を講ずる場合は、薬剤によって
損傷しないよう管を保護する。

4.7 浴室等の防水措置
浴室及び洗面室の枠組（木質の下地材を含む）、床組（浴室又は脱衣室が地上2階以上
の階にある場合は下地材を含む）並びに浴室の天井については、次のいずれかの防水措
置を行う。ただし、1階の浴室まわりをコンクリートブロック造の壁及び又は鉄筋コンク
リート造の壁又は基礎部分の枠組及び床組は除くことができる。
イ．防水紙、シーリングを用いる方法、構造用合板の特等又は1級等の耐水性のある
下地材を用いる、若しくは、ビニール壁紙等の防水性のある材料で仕上げる。
ロ．浴室ユニットとする。浴室部分のみ
ハ．本項4.4.2（土面以外の木部の防潮・防騒措置）の1のイ、ロ又はハ及び2による防
潮・防騒措置を行う。

用語
加圧式防腐・防騒処理木材 加圧式防腐・防騒処理木材は、工場において、注染塗中に置かれた木材に薬液を加圧し
て注入する方法によって製造される。この処理木材は、加圧式防腐・防霧処理木材として販売されているが、J
AS製品については、つぎの4種類があり、それぞれ性能区分が示されている。

表4.4 加圧式防腐・防騒処理木材（JAS製品）

<table>
<thead>
<tr>
<th>表示の方法</th>
<th>性能区分</th>
<th>性能の目安</th>
<th>使用する薬剤名（記号）</th>
</tr>
</thead>
</table>
| 保存処理K2 | K2 | 気候が比較的寒冷な地域にお
| 保存処理K3 | K3 | ける住宅箇材用 |
| 保存処理K4 | K4 | 土台等住宅部材用 |
| 保存処理K5 | K5 | 土台等住宅部材用 |
| 上記の他、クレオソート油（A） | クレオソート油（A） | クレオソート油（A） |
| クロム・鋼に・亜熱化合物（C CA） | クロム・鋼に・亜熱化合物（C CA） | クロム・鋼に・亜熱化合物（C CA） |
この処理材料には、「格付機関名」、「構造材の種類」及び「等級」に加え、「性能区分」と「薬剤名（又は記号）」が表示されており、これを使用する場合には、使用する木材の使用環境や用途により、必要に応じて、使用者が選択できるようになっている。

保存処理K4は、腐朽やシロアリ被害の激しい地域を対象にしている。

なお、保存処理K1は、広葉樹防虫材用であり一般に防腐処理ラウンと呼ばれている。

また、枠組塗装法構造用木材のJSの保存処理（K1を除く）の規格に適合する工場処理による防腐・防蝕処理材と同等の効果があるものに、認証木質建材（Aマーク表示品）として認証された保存処理材などがある。

関係法令

クロリビリホスの使用禁止

防虫用に使用される検知リン系薬剤であるクロリビリホスについては、平成15年7月1日施行の建築基準法により建物での使用が禁止されている。詳しくは本章1.（一般事項）の項の解説を参照。

クロリビリホスを添加した薬剤を使用すると、塩化した土台等の部分から発散し、空気が居室内に流入してしまい、通常の換気等で室内濃度を指針値以下に抑制することは困難であることが明らかになっている。

施工方法

木部防腐剤塗り

建築物の木材が腐朽し易い箇所に塗布して腐朽を防ぐのが目的であるから、目的外の所には塗らない方がよい。例えば、防腐・防蝕処理土台は、すでに防腐防蝕剤を注入してあるので、土台の木口等加工部分以外は塗る必要がない。

表4.4.2 建設地内の防腐・防蝕処理並びに防腐処理及び土壌処理の適用区分

（木材建築物等防腐・防蝕・防虫処理指針）

<table>
<thead>
<tr>
<th>建設地</th>
<th>対象区分</th>
<th>木材</th>
<th>土壌</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>沖縄、九州、四国、中国、近畿の各地方及び愛知、静岡の各県</td>
<td>製材の日本農林規格の保存処理K3以上</td>
<td>塗布又は吹付けによる防腐・防蝕処理</td>
</tr>
<tr>
<td>II</td>
<td>関東地方及び岐阜、長野、山梨の各県</td>
<td>製材の日本農林規格の保存処理K3以上</td>
<td>塗布又は吹付けによる防腐・防蝕処理</td>
</tr>
<tr>
<td>III</td>
<td>新潟、石川、富山、新潟、山形、秋田、岩手、宮城、福島の各県</td>
<td>製材の日本農林規格の保存処理K3以上</td>
<td>塗布又は吹付けによる防腐・防蝕処理</td>
</tr>
<tr>
<td>IV</td>
<td>北海道地方及び青森県</td>
<td>製材の日本農林規格の保存処理K2以上</td>
<td>塗布又は吹付けによる防腐・防蝕処理</td>
</tr>
</tbody>
</table>

土壌処理

ヤマトシロアリ、イエシロアリなどは、地中から基礎、床版及びその他の地面と建物を多様に増殖するものから建物内に侵入する。これを防ぐために地表面の土壌を防腐薬剤で処理することを土壌処理という。しかし建物の防蝕にとって有効な土壌処理も状況の判断を誤ると塗り施用すれば、薬剤により井戸水あるいは地下水を汚染させることも起こりかねない。したがって、土壌処理を行う場合には、敷地の状況、土質などを適切に判断し、処理薬剤の選択、処理方法を決定して水質汚染につながらないように慎重な考慮が払われなければならない。